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SEPARATION SCIENCE AND TECHNOLOGY, 14(5), pp. 415-430, 1979 

Theory of Adsorption by Activated Carbon. II. Continuous 
Flow Columns 

DAVID J. WILSON 
DEPARTMENTS OF CHEMISTRY 

AND ENVIRONMENTAL AND WATER RESOURCES ENGINEERING 
VANDERBILT UNIVERSITY 
NASHVILLE, TENNESSEE 37235 

Abstract 

A lumped parameter model for solute adsorption by activated carbon is used 
to model the operation of continuous flow activated carbon columns. A 
Langmuir adsorption isotherm is used, and the kinetics leading to the Langmuir 
isotherm are included in the continuity and mass balance equations representing 
the system. Two different approaches for the numerical integration of these 
equations are employed and compared. The effects of system parameters on 
column performance are explored. 

INTRODUCTION 

The role of activated carbon as a reasonably priced, regenerable adsorb- 
ent for trace organics in water is unique and well established (1). Common 
practice is to use the carbon in packed or expanded columns operated in 
a continuous flow mode. On near-saturation of the carbon, as evidenced 
by breakthrough of solute, the column is removed and regenerated. 

Such adsorption columns were modeled many years ago by Thomas 
( 2 , 3 )  who assumed a constant flow rate, second-order kinetics, and no 
axial dispersion. He used the method of Riemann to obtain solutions in 
terms of the modified Bessel function I,, and integrals involving I,. Hiester 
and Vermeulen (4) also pursued this approach, and did not consider 
axial dispersion. Masamune and Smith (5) expressed the solutions to 
the problem in terms of integrals; in a later paper (6) they assumed a linear 
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416 WILSON 

isotherm and no axial dispersion, then solved the equations by use of 
double Laplace transforms. Keinath and Weber (7) neglected axial dif- 
fusion and obtained solutions to the equations in terms of exponentials 
and error functions. Keinath (8) has written computer programs to inte- 
grate the differential equations numerically, and exhibited the dependence 
of the breakthrough curves on the parameters of the model; he does not 
include axial dispersion in his model. Weber and his co-workers (9-22) 
have contributed extensively to the modeling of activated carbon columns, 
particularly with regard to biological processes going on in the columns. 

These columns do not operate in a steady-state mode unless provision 
is made for countercurrent flow of the activated carbon, so it is necessary 
to examine the time-dependent continuity and mass balance equations 
which describe the system. In a continuous flow column, several processes 
are occurring simultaneously: bulk flow of free liquid along the length 
of the column, axial dispersion of free liquid along the length of the 
column, diffusion of solute in the free liquid to the mouths of the pores 
in the activated carbon, diffusion of solute into the trapped liquid within 
the pores, and adsorption and desorption of solute on the active sites on 
the surfaces of the pores. Unfortunately, even if we assume that diffusion 
of solute in the free liquid to the mouths of the pores is rapid, models 
including the remaining steps lead one to second-order nonlinear differ- 
ential equations in three independent variables (time, distance down the 
column, and distance into the pores). The numerical integration of these 
equations requires such large amounts of computer time in realistic cases 
as to make this approach out of the question for practical design work. 

We recently examined a rather realistic model for diffusion of solute 
from a large pool of liquid into a pore, followed by reversible chemisorp- 
tion on the walls of the pore (13). Langmuir adsorption was assumed. 
The results of computations carried out with this model were compared 
with results obtained from a much simpler lumped parameter-type model 
for pore diffusion and chemisorption. We found that it was an easy matter 
to assign an effective pore diffusion parameter to the lumped parameter 
model, which made its results almost identical to those of the more elabo- 
rate and realistic model. 

This is the basis for our use here of the lumped parameter model for 
pore diffusion and chemisorption in the construction of equations simu- 
lating the operation of continuous flow columns. We then compare two 
procedures for the numerical integration of these equations: (a) a standard 
predictor-corrector method described by Kelly (14) and used by us previ- 
ously (13), and (b) a linearization method which permits the use of sub- 
stantially larger time intervals in the numerical integration. 
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ANALYSIS 

We first briefly examine the equations realistically modeling activated 
carbon column operation. We let 

c,(y, t )  = concentration of solute in  the free liquid a distance y from 
the top of the column at time t 

c,(x, y ,  t )  = concentration of solute in the pore liquid a distance x from 
the mouth of the pore, located a distance y from the top of 
the column at time t 

T(x,  y ,  t )  = surface concentration of solute at (x ,  y, t )  
Q = volumetric flow rate through column 
11, = volume of free (flowing) liquid per unit length of column 
up = volume of liquid fixed in the pores of the carbon per unit 

s, = surface area of pores per unit length of column 
D, = axial dispersion constant of solute in the flowing liquid 
D, = diffusion constant of solute in the pore liquid 

length of column 

rmax = maximum possible surface concentration of solute on the 

A ,  = cross-sectional area of the pores per unit length of column 
b = concentration of solute at which the equilibrium surface 

k = rate constant for surface adsorption, assumed first order in 

activated carbon 

concentration of solute is r,,,ax/2 

c, and in rmsx - r 

The equations representing flow of fluid through the column, axial 
dispersion, diffusion of solute into the pores, and surface chemisorption 
of solute are 
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418 WILSON 

These equations are nonlinear, so they must be integrated numerically. 
The diffusion and chemisorption processes within the individual pores 
dictate the use of a time increment of less than a tenth of a second, while 
the duration of a column run may be many hours. If one partitions the 
column into 20 horizontal slabs and similarly partitions the pores in 
each slab into 20 volume elements (rather coarse partitionings), we have 
some 820 simultaneous differential equations to be integrated forward 
over roughly 1.5 million time increments, assuming At 0.1 sec and a 
40-hr column run. Such large amounts of computation make this approach 
impractical for use as a design tool. 

We therefore construct a set of equations based upon the lumped pa- 
rameter model to simulate column operation. The model is illustrated in 
Fig. 1 ,  and the previous notation is modified as follows: 

ct(i, t )  = 

cp(i, t )  = 
T(i, t )  = 

concentration of solute in the free liquid in the i-th slab into 
which the column is partitioned 
concentration of solute in the pore liquid in the i-th slab 
surface concentration of solute in the pores of the i-th slab 

lzsa I+ ranspor bulk flow t by 

itaxial dispersion 

'chemisor ption 
and desorption 

FIG. 1. The model used to simulate column operation. 
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ul = volume of free liquid in one slab 
up = volume of liquid in the pores of one slab 
s, = surface area of the pores in one slab 
D, = effective axial dispersion constant 
D, = effective pore diffusion constant 

Inclusion of axial dispersion in this model leads us to second-order 
nonlinear differential equations which cannot be solved by the method 
employed by Thomas and others (2-4). We therefore approximate the 
partial differential equations by means of a finite difference mesh system, 
The differential equations representing this model are 

acl 
ulx(j5 t )  = Q M j  - 1) - c~(.i)l + D I W  - 1) - %(j)  + cl(j + 111 

ac ar 
+ D,[c,(j) - Cl( j> l  (4) 

( 5 )  0 p -p(j, at t )  = Dp[c,(j) - c,(i)l - s p  x(j) 

Substitution of Eq. (6)  into Eq. ( 5 )  yields 

21 p s(j, at t )  = ~ p [ c t ( j )  - C~(.I)I - s p k [ c p ( j ) r m a x  - c p ( j ) r ( j )  - ~T(.I)I 

(7) 

Our first method for the numerical integration of Eqs. (4), (6),  and (7) 
is a predictor-corrector method which we have used extensively previously 
and found to be accurate and stable. The algorithm is as follows: 

predictor starter 

yY(At) = yi(0) + At %(O) (8) 

predictor general 

(9) dY. y f ( t  + A t )  = y i ( t  - At) + 2At - ( t )  dt 
corrector 
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420 WILSON 

As we shall see under “Results,” this procedure works rather well. It 
does, however, lead to disastrous instabilities if the size of At is sufficiently 
large that the pore diffusion, axial dispersion, or chemisorption terms in 
Eqs. (4), (6) ,  and (7) lead to negative concentrations because of the assump- 
tion in the predictor formula that these terms, as they appear in Eq. (9), 
are linear in At.  A similar problem arises with the terms involving Q 
(free fluid flow) in Eq. (6) ,  but here one can evade the problem by choosing 
the slab thickness Ax larger; one must have QAt < ul.  

For reasons of economy in the numerical integration of this system 
of equations, one would like to be able to use larger values of At than the 
predictor-corrector method permits. We develop a method of solution 
in which the dependent variables vary in an exponential way with time 
over the interval (t,  t + At) rather than in a linear way. 

We focus our attention on the equations in the time interval ( t ,  t + At) 
and let t + 7 be the time variable; 7 increases from 0 to At continuously. 
We let 

q ( j ,  + 7 )  = C l ( j ,  t )  + $Lj, 7 )  

q j ,  t + 7 )  = C p ( A  t )  + $,(j, 7 )  

r(j, t + 7 )  = r(j, t )  + ~ ( j ,  7 )  

(1  1) 

(12) 

(13) 

Insertion of these expressions into Eqs. (4), (6),  and (7), and neglect of 
terms quadratic in $z, $,, and y ,  lead to the following system of linear 
differential equations with constant (independent of 7 )  coefficients for 
the $z, $,, and Y: 
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+ DP[C,(% t )  - CdN, t)I 

where Cp(t) = influent solute concentration. 
When these equations are linearized, we obtain 

or still more compactly, as 

dY/dz = F,(t) + A(t)Y 
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422 WILSON 

We employ as a trial solution the vector 

Y = C1 + exp(Az)C, (23) 

and note that Y(z = 0) must vanish; substitution in Eq. (22) establishes 
that 

c,  = -A-~F,  (24) 

C2 = A- 'F, (25) 

so our solution is 

Y ( z )  = -A-'[I - exp (Az)]Fo (I = identity matrix) (26) 

The matrix exponential is defined by the usual power series; use of this 
expression in Eq. (26) permits us to avoid the indicated matrix inversion 
and yields 

) F o  ( A2z2 A3=3 4! Y = z  1 + 2 ! + 3 ! + - + -  

The power series is convergent for all finite z and A. We set z = At ,  calcu- 
late Y ( A t ) ,  recall that 

and use Eqs. (11)-(13) to calculate the c l ( j ,  t + A t ) ,  cJ j ,  t + A t ) ,  
r(j, r + At) .  These new values are then used to calculate F,(t + At) and 
A(t + A t ) ,  and the process outlined above is repeated until integration of 
the differential equations over the desired time interval is complete. 

In carrying out the numerical integrations by this method, we note that 
the bulk of the computer time is used in evaluating the matrix power 
series in Eq. (27). We observe that this power series can be rewritten: 

AT A2z2 A3z3 + - + . - -  (n terms) ' + T + F  4! 

= ( I + $ ( I + $ ( . . . j l +  &(I+$)).-))) (29) 

The matrix A is sparse-it has relatively few nonzero elements and these 
are distributed as follows : 
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A =  

where each diagonal line indicates the presence of a single diagonal of 
nonzero matrix elements. Evidently in the ij-th element of the matrix pro- 
duct AB, 

there are only 2, 3, or 4 nonzero terms. Writing a special matrix multiplica- 
tion subroutine to capitalize on this speeds this method up greatly. 

RESULTS 

All computations were carried out on an XDS Sigma 7 computer. 
The column was partitioned into 20 slabs unless noted otherwise. The 
calculation of a breakthrough curve by the first, predictor-corrector 
method, took 5 min of machine time. Figures 2-10 present results ob- 
tained by the method. 

In Fig. 2 we see the effect of varying the adsorption rate constant k. 
The curve for k = 00 was calculated using a program which assumed 
equilibrium between the concentration of solute in the pore liquid and the 
pore surface concentration of the solute. Increasing k results in a very 
marked improvement in the shape of the breakthrough curve; leakage 
through the column before saturation is drastically reduced. Almost 
exactly the same effect is observed when one increases the diffusion con- 
stant of the solute into the pores, as shown in Fig. 3. Figure 4 shows the 
effect of varying the pore diffusion constant D, when k is infinite. It is 
difficult to see how one could experimentally distinguish between control 
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0 6 .. 12x1OLml 18 24 

FIG. 2. Dependence of breakthrough curves (effluent concentration versus 
effluent volume) on adsorption rate constant k .  k = 2 x lo4 (l) ,  lo4 (2) ,  
5 x lo3 (3), and 03 (4) cm3/rnole sec; Q = 2.0 cm3/sec; Dl = 0.0 cm3/sec; 
D p A p  = 2.0 cm4/sec; sp = 
4 x lo5 cm2; vp  = l .0cm3; v l  = l .0cm3; c,, = mole/cm3; At = 0.1 sec; 

b = lo-* mole/crn3; rmax = 3 x lo-'" cm2; 

n = 20. 

f 

8 -  

6 -  

4 -  

2 -  

0 6 24 

FIG. 3. Dependence of breakthrough curves on pore diffusion parameter D p A p .  
D,Ap = 2.0 (l), 1.0 (2),  and 0.5 (3) crn4/sec; k = 2 x 104cm3/molesec. 

Other parameters as in Fig. 2. 
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8 -  

6 -  

ceff 
4- 
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IO~XIO-’ motes/ml t 
0 6 12xKYml 18 24 

%ff 

FIG. 4. Dependence of breakthrough curves on pore diffusion parameter DpAp. 
D p A ,  = 2.0 (l), 1.0 (2), and 0.5 (3) cm4/sec; k = 03. Other parameters as 

in Fig. 2. 

of breakthrough curve shape by adsorption rate constant Ic and control 
by pore diffusion constant Dr 

Figure 5 shows the effect of axial dispersion on column performance; 
as expected, increased axial dispersion results in greater leakage of solute 
through the column before saturation. We also found that increasing the 
axial dispersion constant above a certain point (Dl = 1.0 if At = 0.1 
sec and Ax = 2.5 cm) results in the abrupt onset of catastrophic instabili- 
ties in the numerical integration. A run was made with D, = 1.5, At = 
0.05 ; the numerical integration proceeded satisfactorily for this run, in- 
dicating that the instability is a mathematical artifact and not an indication 
of instability in the underlying physical system. We found it surprising 
that the shapes of the breakthrough curves are so little affected by in- 
creasing the value of the axial dispersion constant. 

One can also take account of increased axial dispersion by decreasing 
the number of slabs into which the column is partitioned; this avoids the 
instability problem which arises if D ,  is made too large, and also reduces 
the amount of computer time required. As seen in Fig. 6 ,  the magnitude 
of the effect is small and is indistinguishable from the results obtained by 
varying D,. Our findings indicate that axial dispersion does not contribute 
significantly to the shapes of the breakthrough curves and is generally 
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0 6 12X10Pml 18 24 
Vef f 

FIG. 5. Dependence of breakthrough curves on axial dispersion constant D I .  
Dl = 0.0 (l), 0.9 (2), and 1.5 cm3/sec (3); k = 2 x lo4 cm3/mole sec. Other 

parameters as in Fig. 2. 

0 6 

8 -  

6 -  

4 -  

2 -  

0 
Vef f 

FIG. 6. Dependence of breakthrough curves on number of slabs n. n = 20, 
DpAp = 2.0cm4/sec, sp = 4 x lo5 crn', up = 1.0cm3, and ul = 1.0cm3 for 
Run 1 .  n = 10, DpA, = 4.0 cm4/sec, sp = 8 x lo5 cmZ, up = 2.0 cm3, and 
vl=2.0 cm3 for Run 2. k = 2 x lo4 cm3/mole sec; other parameters as 

in Fig. 2. 
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6 ? 
427 

/- 

FIG. 7. Dependence of breakthrough curves on pore volume parameter up. 
up = 1 .O (1) and 0.5 (2) cm3; k = 2 x lo4 cm3/moie sec; other parameters as 

in Fig. 2. 

best handled by the choice of the number of slabs into which the column 
is partitioned. 

The effect of pore volume is seen in Fig. 7; the major contribution seems 
to be due simply to the solute storage capacity of the trapped liquid in 
the pores, with the curve corresponding to the larger pore volume being 
displaced to the right. The strength of the binding of solute to active sites 
in the pores is measured by the Langmuir parameter b, the solute con- 
centration at half surface saturation; binding strength increases as b 
decreases. IA Fig. 8 we see that, as expected, breakthrough occurs sooner 
the larger the value of b. 

Increasing the volumetric fiow rate through the column results in some 
deterioration of column performance, as illustrated in Fig. 9. Other com- 
putations, not shown here, indicate that the magnitude of this effect is 
strongly dependent on the values of k and D,. Increased flow rates de- 
crease somewhat the effect of increased axial dispersion constants, but 
the effect is small. 

Figure 10 shows the effect of increasing solute concentration on the 
shapes of the breakthrough curves. The breakthrough front becomes 
substantially sharper as we go to higher solute concentrations. 

Several runs were made using the second approach, outlined in Eqs. 
(11)-(30), and we found that the magnitude of At which could be used 
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FIG. 8. Dependence of breakthrough curves on Langmuir parameter 6 .  b = 
mole/cm3 (3); k = 2 x lo4 cm3/mole sec; 

other parameters as in Fig. 2. 
(l), 3 x (2),  and 

FIG. 9. Dependence of breakthrough curves on flow rate Q. Q = 3.0 (1), 
2.5 (2), and 2.0 (1) cm3/sec; k = 2 x lo4 cm3/mole sec; other parameters as 

in Fig. 2. 
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FIG. 10. Dependence of breakthrough curves on influent solute concentration 
co. co = 1.0 (l), 1.5 (2), and 2.0 (3) x lov6 mole/m3; k = 2 x lo4 cm3/mole 

sec; other parameters as in Fig. 2. 

without instability increased by a factor of about 5 above that which could 
be used with the predictor-corrector method. The breakthrough curves 
calculated by the two methods for a given run were identical to four places. 
Unfortunately, even with the larger value of At  which could be used, the 
second approach was substantially slower than the predictor-corrector 
method. Even with the streamlining of the matrix multiplication procedure 
described above, the running time of the second method is of order n2, 
where n is the number of slabs into which the column is divided. The 
predictor-corrector method, on the other hand, is of order n. Evidently 
the second method is likely to be competitive only for relatively small 
values of n. 

CONCLUSIONS 
In summary, we conclude that the effects of axial dispersion are rather 

slight and are best taken into account by adjustment of the number of 
slabs into which the column is partitioned. The effects of adsorption rate 
constant k and pore diffusion constant are large and essentially indis- 
tinguishable. The predictor-corrector method of integrating the differential 
equations gives results identical to a more elaborate approach and is 
generally substantially faster. 
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