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Theory of Adsorption by Activated Carbon. Il. Continuous
Flow Columns

DAVID J. WILSON

DEPARTMENTS OF CHEMISTRY

AND ENVIRONMENTAL AND WATER RESOURCES ENGINEERING
VANDERBILT UNIVERSITY
NASHVILLE, TENNESSEE 37235

Abstract

A lumped parameter model for solute adsorption by activated carbon is used
to model the operation of continuous flow activated carbon columns. A
Langmuir adsorption isotherm is used, and the kinetics leading to the Langmuir
isotherm are included in the continuity and mass balance equations representing
the system. Two different approaches for the numerical integration of these
equations are empioyed and compared. The effects of system parameters on
column performance are explored.

INTRODUCTION

The role of activated carbon as a reasonably priced, regenerable adsorb-
ent for trace organics in water is unique and well established (7). Common
practice is to use the carbon in packed or expanded columns operated in
a continuous flow mode. On near-saturation of the carbon, as evidenced
by breakthrough of solute, the column is removed and regenerated.

Such adsorption columns were modeled many years ago by Thomas
(2, 3) who assumed a constant flow rate, second-order kinetics, and no
axial dispersion. He used the method of Riemann to obtain solutions in
terms of the modified Bessel function J, and integrals involving I,. Hiester
and Vermeulen (¢) also pursued this approach, and did not consider
axial dispersion. Masamune and Smith (5) expressed the solutions to
the problem in terms of integrals; in a later paper (6) they assumed a linear
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isotherm and no axial dispersion, then solved the equations by use of
double Laplace transforms. Keinath and Weber (7) neglected axial dif-
fusion and obtained solutions to the equations in terms of exponentials
and error functions. Keinath (8) has written computer programs to inte-
grate the differential equations numerically, and exhibited the dependence
of the breakthrough curves on the parameters of the model; he does not
include axial dispersion in his model. Weber and his co-workers (9-12)
have contributed extensively to the modeling of activated carbon columns,
particularly with regard to biological processes going on in the columns.

These columns do not operate in a steady-state mode unless provision
is made for countercurrent flow of the activated carbon, so it is necessary
to examine the time-dependent continuity and mass balance equations
which describe the system. In a continuous flow column, several processes
are occurring simultaneously: bulk flow of free liquid along the length
of the column, axial dispersion of free liquid along the length of the
column, diffusion of solute in the free liquid to the mouths of the pores
in the activated carbon, diffusion of solute into the trapped liquid within
the pores, and adsorption and desorption of solute on the active sites on
the surfaces of the pores. Unfortunately, even if we assume that diffusion
of solute in the free liquid to the mouths of the pores is rapid, models
including the remaining steps lead one to second-order nonlinear differ-
ential equations in three independent variables (time, distance down the
column, and distance into the pores). The numerical integration of these
equations requires such large amounts of computer time in realistic cases
as to make this approach out of the question for practical design work.

We recently examined a rather realistic model for diffusion of solute
from a large pool of liquid into a pore, followed by reversible chemisorp-
tion on the walls of the pore (/3). Langmuir adsorption was assumed.
The results of computations carried out with this model were compared
with results obtained from a much simpler lumped parameter-type model
for pore diffusion and chemisorption. We found that it was an easy matter
to assign an effective pore diffusion parameter to the lumped parameter
model, which made its results almost identical to those of the more elabo-
rate and realistic model.

This is the basis for our use here of the lumped parameter model for
pore diffusion and chemisorption in the construction of equations simu-
lating the operation of continuous flow columns. We then compare two
procedures for the numerical integration of these equations: (a) a standard
predictor-corrector method described by Kelly (14) and used by us previ-
ously (13), and (b) a linearization method which permits the use of sub-
stantially larger time intervals in the numerical integration.,
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ANALYSIS

We first briefly examine the equations realistically modeling activated
carbon column operation. We let

¢y, t) = concentration of solute in the free liquid a distance y from
the top of the column at time ¢
¢c,(x, y, t) = concentration of solute in the pore liquid a distance x from
the mouth of the pore, located a distance y from the top of
the column at time ¢
T'(x, y, t) = surface concentration of solute at (x, y, t)
Q = volumetric flow rate through column
v; = volume of free (flowing) liquid per unit length of column
v, = volume of liguid fixed in the pores of the carbon per unit
length of column
s, = surface area of pores per unit length of column
D, = axial dispersion constant of solute in the flowing liquid
D, = diffusion constant of solute in the pore liquid
I'.x = maximum possible surface concentration of solute on the
activated carbon
A, = cross-sectional area of the pores per unit length of column
b = concentration of solute at which the equilibrium surface
concentration of solute is I',,, /2
k = rate constant for surface adsorption, assumed first order in
coandin I, — T

The equations representing flow of fluid through the column, axial
dispersion, diffusion of solute into the pores, and surface chemisorption
of solute are

e, _ Q¢ D, d%¢, D,A, dc,
at y’ t) - U[ ay(y’ t) + U! ayz (ya t) + Ux ax (O,J’, t) (1)

2

dc, _ D, &%, ks,
né?(x; Vs t) = v, Ox2 (x9 s t) - v, [c,,(x, s t)rmax

- Cp(xay’t)r(x’ys t) - br(x’y: t)]’ (2)
Cp(o’ »nt) = cl(y’ t)

dc,
E(}’, t) = 0, = pore length
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or
a’(x’ Y, t) = k[cp(x’ s t)rmax - cp(x’ Vs t)r(x’ Y, t) — bF(x, Vs 1)l (3)

These equations are nonlinear, so they must be integrated numerically.
The diffusion and chemisorption processes within the individual pores
dictate the use of a time increment of less than a tenth of a second, while
the duration of a column run may be many hours. If one partitions the
column into 20 horizontal slabs and similarly partitions the pores in
each slab into 20 volume elements (rather coarse partitionings), we have
some 820 simultaneous differential equations to be integrated forward
over roughly 1.5 million time increments, assuming Ar = 0.1 sec and a
40-hr column run. Such large amounts of computation make this approach
impractical for use as a design tool.

We therefore construct a set of equations based upon the lumped pa-
rameter model to simulate column operation. The model is illustrated in
Fig. I, and the previous notation is modified as follows:

¢,(i, t) = concentration of solute in the free liquid in the i-th slab into
which the column is partitioned

¢ (i, ) = concentration of solute in the pore liquid in the i-th slab

I'(i, t) = surface concentration of solute in the pores of the i-th slab

ltransport by
butk flow

{taxial dispersion

“pore diffusion

t chemisorption
and desorption

FiG. 1. The model used to simulate column operation.
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v, = volume of free liquid in one slab

v, = volume of liquid in the pores of one slab
s, = surface area of the pores in one slab

D, = effective axial dispersion constant
D, = effective pore diffusion constant

Inclusion of axial dispersion in this model leads us to second-order
nonlinear differential equations which cannot be solved by the method
employed by Thomas and others (2-4). We therefore approximate the
partial differential equations by means of a finite difference mesh system.
The differential equations representing this model are

ocy, . , , . , ;
Uzgct‘(J, 1)y=Qle(j— 1) — e + Dile(j— 1) = 2¢(j) + e(j + 1)]

+ Dyfe,(i) - (i) @
9 or
vp—a%(j, t) = D,le(j) — e, (D] — sP.é?(j) )
or . ] o .
-5-(']’ t) = k[cp(.])rmax - cp(.])r(]) - br(_])] (6)

Substitution of Eq. (6) into Eq. (5) yields

Up(zaftg(j’ t) = Dp[cl(j) - cp(j)] - Spk[cp(j)rmax - CP(])F(_]) - br(j)]
M

Our first method for the numerical integration of Eqs. (4), (6), and (7)
is a predictor-corrector method which we have used extensively previously
and found to be accurate and stable. The algorithm is as follows:

predictor starter
yHAD = 3@ + a2 (0) ®
predictor general
it + At) = y(t — At) + 2At%(t) )
corrector

Yt + At) = y(t) + —Az—tl:%(t) + %(! + At)] (10)
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As we shall see under ‘““Results,” this procedure works rather well. It
does, however, lead to disastrous instabilities if the size of At is sufficiently
large that the pore diffusion, axial dispersion, or chemisorption terms in
Eqgs. (4), (6), and (7) lead to negative concentrations because of the assump-
tion in the predictor formula that these terms, as they appear in Eq. (9),
are linear in Az. A similar problem arises with the terms involving Q
(free fluid flow) in Eq. (6), but here one can evade the problem by choosing
the slab thickness Ax larger; one must have QA? < v,.

For reasons of economy in the numerical integration of this system
of equations, one would like to be able to use larger values of Ar than the
predictor-corrector method permits. We develop a method of solution
in which the dependent variables vary in an exponential way with time
over the interval (¢, £ + At?) rather than in a linear way.

We focus our attention on the equations in the time interval (¢, 1 + At)
and let ¢ + 7 be the time variable; t increases from 0 to A# continuously.
We let

C,(j,t + T) = cl(js t) + lﬁl(.j’ T) (11)
cp(jst + ‘E) = Cp(.is t) + l#p(j’ T) (12)
I'Git+0=I01+ 70,7 13)

Insertion of these expressions into Eqs. (4), (6), and (7), and neglect of
terms quadratic in ¥, ¥, and 7, lead to the following system of linear
differential equations with constant (independent of ) coefficients for
the ¥, ¥, and y:

d 1
W00 = Qe = 1,0) = 6 1)

+ Dilef(i—1,8) — 2¢,(js 1) + e(j + 1, 1)]

+ D,le,(js 1) — e, O] + QWi(j — 1, D) — ¥, 7)]

+ D(j— 1,9 — 20,0 + ¥i(j + 1,7)]

+ DIy, (j, D) = ¥i(j, D} (14)

d 1
7#:2 U= U—F{Dp[Cz(j, 1) — ¢,(J, D= skle, (U, OT(, 1) — bI(j, 1)]

+ Dp[‘/jl(ja T) - lﬁp(j’ T)] - Spk[‘pp(j’ T)Fmax
= ¢(Us (U O — TG Y,y 7) — by(j, DI} (15)
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d
0 D) = Kyl D max = 6,0 DTG, 1) = BLG, 1)
+ KLY, O max = € D905 ©) = TG, W, ©) = By, )
(16)

We must modify Eq. (4) for j = 1 and N, the top and bottom of the
column; these boundary equations are

0 (1, 1) = QL) - e, 0 + D=1, 1) + €2, )]
+ Dlc,(1,1) — ¢f(1, 1)] a7
and
0 N, 1) = QledN — 1,1) = cin O] + DfedN = 1,1) = eN, ]

+ D,lc,(n, 1) — ¢, )] (18)

where CP(¢) = influent solute concentration.
When these equations are linearized, we obtain

di,

= &L= —{Qlc @) — e, )] + Df—c(1,8) + ¢/2, 1))
+ Dle,(1,t) — ¢(1, )] + [-Q — D, — D1, 1)
+ D2, 7) + Dy, (1, O} (19)
and
d‘/’t

2 N0 = '"{Q["z(N = L) — (N, )] + DfefN — 1,1) — (I, 1)]

+ Dyle,(N, 1) — eifn, 1)] + [@ + DN — 1,7)
+ [=Q = Dy — DN, 1) + Dy, (N, 1)} (20)

We rewrite Egs. (14), (15), (16), (19), and (20) in 2 much more compact
matrix notation as

d w‘l(la 7) F}(t) ‘/’5(1: 7)
Zl =|: + A@)| @D
T\, 7 Fin(t) ¥(N, 1)

or still more compactly, as
dY/dr = Fy(t) + AQ)Y 22)
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We employ as a trial solution the vector
Y = C, + exp (A71)C, 23)

and note that Y(r = 0) must vanish; substitution in Eq. (22) establishes
that

C, = —A"'F, 24)
C, = A7'F, (25)

so our solution is
Y(©) = —AYI — exp (A7)]F, (I = identity matrix) (26)

The matrix exponential is defined by the usual power series; use of this
expression in Eq. (26) permits us to avoid the indicated matrix inversion
and yields
At A%r A3
Y=T<I+-2—!+T+-—4T—+--->Fo 1))
The power series is convergent for all finite r and A. We set 1 = A¢, calcu-
late Y(At), recall that

¥, At))
: (28)

Y(At) = ( :
y(N, At)

and use Egs. (11)-(13) to calculate the c,(j, ¢ + Az), c,(j, t + A?),
I'(j, t + Ar). These new values are then used to calculate Fo(¢r + Af) and
A(t + At), and the process outlined above is repeated until integration of
the differential equations over the desired time interval is complete.

In carrying out the numerical integrations by this method, we note that
the bulk of the computer time is used in evaluating the matrix power
series in Eq. (27). We observe that this power series can be rewritten:

At A’2 A3

L T TR T

(Al 4)))

The matrix A is sparse—it has relatively few nonzero elements and these
are distributed as follows:

+ - -+ (n terms)
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A= (30)

where each diagonal line indicates the presence of a single diagonal of
nonzero matrix elements. Evidently in the ij-th element of the matrix pro-
duct AB,

Cij = kz aubyi; (3D

there are only 2, 3, or 4 nonzero terms. Writing a special matrix multiplica-
tion subroutine to capitalize on this speeds this method up greatly.

RESULTS

All computations were carried out on an XDS Sigma 7 computer.
The column was partitioned into 20 slabs unless noted otherwise. The
calculation of a breakthrough curve by the first, predictor-corrector
method, took 5 min of machine time. Figures 2-10 present results ob-
tained by the method.

In Fig. 2 we see the effect of varying the adsorption rate constant k.
The curve for £ = co was calculated using a program which assumed
equilibrium between the concentration of solute in the pore liquid and the
pore surface concentration of the solute. Increasing k results in a very
marked improvement in the shape of the breakthrough curve; leakage
through the column before saturation is drastically reduced. Almost
exactly the same effect is observed when one increases the diffusion con-
stant of the solute into the pores, as shown in Fig. 3. Figure 4 shows the
effect of varying the pore diffusion constant D, when k is infinite. It is
difficult to see how one could experimentally distinguish between control
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10 X107 moles/mi 4

0 6 [2x10®mi I8 24
Veff

F1G. 2. Dependence of breakthrough curves (effluent concentration versus

effluent volume) on adsorption rate constant k. & = 2 x 10* (1), 10* (2),

5 x 103 (3), and o (4) cm?®/mole sec; @ = 2.0 cm?3/sec; D, = 0.0 cm?/sec;

D,4, = 2.0cm?*/sec; b = 10"% mole/cm?®; Imax =3 X 107%cm?; s, =

4 x 10°cm?; v, = 1.0cm3; v; = 1.0cm3; ¢ = 10 ¢ mole/cm?; Az = 0.1 sec;
n = 20.

10rX10"" moles/ml

— Il i

0] 6 12%10*mi 8 24
Vet
FiG. 3. Dependence of breakthrough curves on pore diffusion parameter D,4,.

D A4, =20 (1), 1.0 (2), and 0.5 (3) cm*/sec; k& = 2 x 10* cm3/mole sec.
Other parameters as in Fig. 2.
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10rxI0™" moles/ml

0 3 12Xt ml 18 24
Veft

FiG. 4. Dependence of breakthrough curves on pore diffusion parameter D,A4,.
D,A4, =20 (1), 1.0 (2), and 0.5 (3) cm*/sec; k = 0. Other parameters as
in Fig. 2.

of breakthrough curve shape by adsorption rate constant k& and control
by pore diffusion constant D,.

Figure 5 shows the effect of axial dispersion on column performance;
as expected, increased axial dispersion results in greater leakage of solute
through the column before saturation. We also found that increasing the
axial dispersion constant above a certain point (D; = 1.0 if At = 0.1
sec and Ax = 2.5 cm) results in the abrupt onset of catastrophic instabili-
ties in the numerical integration. A run was made with D, = 1.5, At =
0.05; the numerical integration proceeded satisfactorily for this run, in-
dicating that the instability is a mathematical artifact and not an indication
of instability in the underlying physical system. We found it surprising
that the shapes of the breakthrough curves are so little affected by in-
creasing the value of the axial dispersion constant.

One can also take account of increased axial dispersion by decreasing
the number of slabs into which the column is partitioned; this avoids the
instability problem which arises if D, is made too large, and also reduces
the amount of computer time required. As seen in Fig. 6, the magnitude
of the effect is small and is indistinguishable from the results obtained by
varying D,. Our findings indicate that axial dispersion does not contribute
significantly to the shapes of the breakthrough curves and is generally
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I0rx10°" mole/mi

2x10 |
8 -
IXI0
(38
Ceff
4t
2 .
o 6 [2xI0*ml 18 24

Veff

Fi1G. 5. Dependence of breakthrough curves on axial dispersion constant D;.
D, = 0.0 (1), 0.9 (2), and 1.5 cm?/sec (3); kK = 2 x 10* cm®/mole sec. Other
parameters as in Fig. 2.

10x10™" moles/ml

0 5 12xI0°ml 18 24
Veff

F1G. 6. Dependence of breakthrough curves on number of slabs n. n = 20,

D,A, = 2.0 cm*/sec, s, = 4 X 10° cm?, v, = 1.0 cm?, and v, = 1.0 cm? for

Run 1. n =10, D,4, = 4.0cm?*/sec, 5, = 8 X 10° cm?, v, = 2.0cm?, and

v,=2.0cm® for Run 2. k =2 X 10* cm3/mole sec; other parameters as
in Fig. 2.
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I0XI0" moles/m! 2

o} 6 2xI0*'ml I8 24
Vetf

FiG. 7. Dependence of breakthrough curves on pore volume parameter v,.
v, = 1.0 (1) and 0.5 (2) cm?; & = 2 x 10* cm*®/mole sec; other parameters as
in Fig. 2.

best handled by the choice of the number of slabs into which the column
is partitioned.

The effect of pore volume is seen in Fig. 7; the major contribution seems
to be due simply to the solute storage capacity of the trapped liquid in
the pores, with the curve corresponding to the larger pore volume being
displaced to the right. The strength of the binding of solute to active sites
in the pores is measured by the Langmuir parameter b, the solute con-
centration at half surface saturation; binding strength increases as b
decreases. In Fig. 8 we see that, as expected, breakthrough occurs sooner
the larger the value of b.

Increasing the volumetric flow rate through the column results in some
deterioration of column performance, as illustrated in Fig. 9. Other com-
putations, not shown here, indicate that the magnitude of this effect is
strongly dependent on the values of k£ and D,. Increased flow rates de-
crease somewhat the effect of increased axial dispersion constants, but
the effect is small.

Figure 10 shows the effect of increasing solute concentration on the
shapes of the breakthrough curves. The breakthrough front becomes
substantially sharper as we go to higher solute concentrations.

Several runs were made using the second approach, outlined in Egs.
(11)-(30), and we found that the magnitude of A¢ which could be used
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10XI0" "moles/ml

i 1 1

0 6 12xI0tml I8 24
Veft

FiG. 8. Dependence of breakthrough curves on Langmuir parameter b. b =
10-7 (1), 3 x 10~2 (2), and 10~® mole/cm?® (3); £ = 2 x 10* cm?*/mole sec;
other parameters as in Fig. 2.

10+XI0"" moles/mi l

1

3x10° mi 4

0 I 2
Veff

F1G. 9. Dependence of breakthrough curves on flow rate Q. @ = 3.0 (1),
2.5 (2), and 2.0 (1) cm?3/sec; k = 2 X 10* cm3/mole sec; other parameters as
in Fig. 2,
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N

rX10"®moles/ml 3

Coft

0 1 2x10° 3
Vetf

Fi1G. 10. Dependence of breakthrough curves on influent solute concentration
co. ¢o = 1.0 (1), 1.5 (2), and 2.0 (3) X 10~ ¢ mole/fem?®; k = 2 x 10* cm3/mole
sec; other parameters as in Fig. 2.

without instability increased by a factor of about 5 above that which could
be used with the predictor-corrector method. The breakthrough curves
calculated by the two methods for a given run were identical to four places.
Unfortunately, even with the larger value of At which could be used, the
second approach was substantially slower than the predictor-corrector
method. Even with the streamlining of the matrix multiplication procedure
described above, the running time of the second method is of order n?,
where n is the number of slabs into which the column is divided. The
predictor-corrector method, on the other hand, is of order n. Evidently
the second method is likely to be competitive only for relatively small
values of n.

CONCLUSIONS

In summary, we conclude that the effects of axial dispersion are rather
slight and are best taken into account by adjustment of the number of
slabs into which the column is partitioned. The effects of adsorption rate
constant k and pore diffusion constant are large and essentially indis-
tinguishable. The predictor-corrector method of integrating the differential
equations gives results identical to a more elaborate approach and is
generally substantially faster.
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